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Abstract—Dynamic Vehicle Routing (DVR) problems involve
a vehicle that seeks to service demands which are generated
via a spatio-temporal stochastic process in a given environment.
This paper introduces a DVR problem in which the vehicle
needs to return to a central facility from time to time. We
model the return events as a Poisson process with a known
parameter. The problem parameters are the demand generation
rate, the size of the environment and the recall rate. The goal
is to design service policies for the vehicle in order to minimize
the expected service time per demand. The contributions are
as follows. We first provide a complete analysis of the regime of
low demand arrival using a first-come-first-served policy. For the
regime of high demand arrival, we derive a policy independent
lower bound on the expected service time as a function of the
problem parameters. We then adapt a well-known policy based
on repeated computation of the Euclidean Traveling Salesperson
tour through unserviced demands and provide an upper bound
on the expected service time, quantifying the factor of optimality
relative to the lower bound. We supplement the analysis with
several insightful numerical simulations.

Index Terms—Motion planning, stochastic processes, optimiza-
tion

I. INTRODUCTION

DYNAMIC vehicle routing (DVR) refers to a class of

problems in which one or many vehicles seek to service

demands that appear sequentially in a given environment.

The goal is to determine in what sequence should each

vehicle service demands in order to minimize the average time

between the generation of a demand to the demand getting

serviced. These problems arise in several applications ranging

from surveillance and environmental monitoring [1] to efficient

package delivery [2] using drones. This paper introduces a

new variant of DVR problems in which a vehicle is required

to periodically visit a given facility in the environment as per

the outcome of a random process. This could be due to a high

priority task to be completed at the facility or for re-fueling

purposes when working in uncertain environments or for pro-

active maintenance reasons.

Classic vehicle routing problems are concerned with plan-

ning optimal vehicle routes to visit a set of demands. The

routes are planned with complete information of the targets

and thus, the optimization is static but combinatorial [3].

In contrast, DVR considers scenarios in which the demand

information is not known a priori, and thus routes must

be re-planned as new information becomes available over

time. This problem was introduced on graph environments

in [4]. Fundamental limits, novel policies and their constant

factor optimality guarantees in continuous environments were

established in [5]. Subsequent developments in this line of
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work have been mostly for specific novel features in the

problem formulation. Demands may be static, but in a dy-

namically varying environment [6], [7] or with multiple levels

of importance [8]. The vehicle may be tasked with performing

pickup and delivery operations [9], [10] or may possess motion

constraints [11], [12], [13]. Extensions to multiple vehicles

case which do not require explicit communication have also

been considered [14]. The demands may be mobile as consid-

ered in our body of work [15], [16], [17]. We refer the reader

to [18] for detailed review of this field. The present paper

considers a DVR problem for a single vehicle with simple

motion and demand arrival process similar to [19], but with a

novel aspect of requiring the vehicle to visit a centrally located

facility as per a temporal stochastic process. Key differences

with [8] lie in the problem formulation wherein their goal

was to minimize a strict convex combination of the waiting

times of the high and low priority demands and therefore, the

analysis tools from [8] are not applicable in the present setting.

Modeling the recall process can be an elaborate task that

depends on the particular application, such as recall due to

failure or for re-fueling purposes. For analytic tractability, this

paper models recall as a random process, typically Poisson

distributed with parameter equal to µ ≥ 0. The demands are

generated uniformly randomly in the environment and as per

another, independent Poisson process over time with a known

parameter λ > 0. The problem parameters are the demand

generation rate λ, the size of the environment modeled as a

compact region of area A and the parameter µ of the recall

model. The goal is to design service policies for the vehicle in

order to minimize the expected time taken to service a demand.

Our contributions are as follows. We first analyze the param-

eter regime called light load (λ → 0+) using a policy based

on first-come-first-served order of servicing the demands. We

provide a closed form expression for the expected service time

per demand in this regime. We then focus the majority of this

paper analyzing the heavy load regime (λ → +∞). In this

regime, we first derive a fundamental limit to the problem

in terms of a lower bound on the expected service time as

a function of the problem parameters which holds for any

admissible policy for the vehicle. We then design a service

policy by adapting a well-known policy based on repeated

computation of the Euclidean Traveling Salesperson (ETSP)

tour through unserviced demands. We provide an upper bound

on the expected service time for this policy and show that it

performs within a constant factor of the lower bound, where

the constant factor depends only on A and µ. Finally, we

numerically study the: 1) performance of the TSP-based policy

in non-asymptotic parameter regimes; 2) comparison with a

simple nearest neighbor policy and, 3) performance of the

TSP-based policy with a recall model based on a linear hazard

rate that generalizes the Poisson recall process considered in



the analysis.

This paper is organized as follows. Section II presents

the mathematical description of the problem considered. Sec-

tions III and IV present service policies for the vehicle

and their analysis for the light and the heavy load regimes,

respectively. Section V presents a numerical study of the heavy

load problem setting. Section VI summarizes this work and

identifies directions for future extensions.

II. PROBLEM FORMULATION AND BACKGROUND

We begin with the problem statement and present some

useful background results.

A. Modeling and Problem Statement

We consider an environment E ⊂ R
2, assumed to be a

compact convex region with area A. While it is possible to

extend the analysis in this paper to higher dimensions, for

ease of exposition, we focus on a 2 dimensional version in

this paper wherein E is a square. The demands for service

are generated according to a temporal Poisson process with

parameter λ > 0, and their locations are independent and

uniformly distributed in E . Each demand requires an inde-

pendent and identically distributed (i.i.d.) amount of on-site

service time with mean s̄ > 0 and finite second moment. The

service time of demand i, denoted as Ti is defined as the time

elapsed between the arrival of the i-th demand and the time the

vehicle services the i-th demand. The steady-state service time

is E[T ] := lim supi→+∞ E[Ti], which refers to the expected

service time of a demand after a transient due to the initial

location of the vehicle and the demand generation process has

passed.

The service vehicle is modeled as a single integrator with

speed normalized to unity. Thus, we will use time elapsed and

distance traveled interchangeably. Specifically, let p(t) ∈ E
denote the position of the vehicle at time t. Let Q(t) ⊂ E
denote the set of all unserviced demand locations at time t,
and n(t) the cardinality of Q(t). Servicing of a demand qi ∈
Q and removing it from the set Q occurs when the vehicle

reaches the location of the demand and spends an i.i.d. amount

of on-site service time. A static feedback control policy for the

system is a map P : E × F(E) → R
2, where F(E) is the set

of finite subsets of E , assigning a commanded velocity to the

vehicle as a function of the current state of the system, given

by

ṗ(t) = P(p(t),Q(t)).

A policy P is said to be stable if the expected number of

unserviced demands in the environment is uniformly bounded

at all times. A standard calculation (cf. [19]) yields that if E[T ]
is finite for a policy, then the expected number of unserviced

demands, E[n] = λ(E[T ] − s̄). The load factor ρ := λs̄,

signifies the fraction of time the vehicle performs on-site

service. A necessary condition for the existence of a stable

policy is that the load factor ρ < 1, i.e., in the expected amount

of time during which the vehicle performs on-site service, no

new demand is expected to be generated.

The novel aspect introduced in this work is that the service

vehicle has to return to a facility, located at the center of E

periodically over time. The return events are assumed to be

generated independently of the demand generation process and

occur as per a Poisson process with intensity µ > 0. The goal

is to design a policy P for the service vehicle to minimize E[T ]
in presence of the stochastic return process. The expectation

E[·] is with respect to the joint distribution of the demand

generation process and the recall process which are assumed

to be independent.

Solution outline: We design service policies and present their

analysis in both the light load regime (ρ → 0+ such that

λ → 0+) and the heavy load regime (ρ → 1− such that

λ → +∞ and s̄ → 1/λ). We will begin with the light load

analysis and then present the heavy load results. In the heavy

load, minimizing E[T ] directly is difficult and so, we will first

derive a lower bound on E[T ] for any stable policy. We will

then propose and analyze a policy which requires the vehicle

to repeatedly compute the ETSP tour through the number of

unserviced demands in the environment and then compare an

upper bound on E[T ] for the policy with the lower bound.

For this purpose, in the next subsection, we will review some

properties on length of the ETSP and inter-demand distance

in presence of a large number of demands.

B. Shortest path through a large number of points

Given a set Q of n points in R
2, the ETSP problem is to

determine the shortest tour, i.e., a closed path that visits each

point exactly once. Let ETSP(Q) denote the length of the

ETSP tour through Q. Below is classic result from [20].

Theorem II.1 (Asymptotic ETSP length, [20]) If a set Q of

n points are distributed independently and uniformly in a

compact region of area A, then there exists a constant βTSP

such that, almost surely,

lim
n→+∞

ETSP(Q)√
n

= βTSP

√
A. (1)

The constant βTSP has been estimated numerically as βTSP ≈
0.7120± 0.0002.

The following is a useful intermediate result providing

a lower bound on the expected distance to travel between

demands [21, Page 23].

Theorem II.2 (Travel distance lower bound, [21]) In the

limit of ρ → 1−, if the expected number of unserviced

demands in E is E[n], then a lower bound on the expected

travel distance between demands is

βTSP√
2

√

A

E[n]
.

III. LIGHT LOAD ANALYSIS

This section formalizes a policy for the vehicle in the

light load, i.e., ρ → 0+ such that λ → 0+. The idea is

that the vehicle remains at the facility location until there

is a demand in the environment. While there are unserviced

demands, the vehicle serves them in a first-come-first-served

(FCFS) manner. If a recall event is generated or if there are



no unserviced demands, the vehicle returns to the facility and

then resumes the FCFS order.

The following is a simple result that quantifies the expected

time taken to service a demand under the stochastic return

model considered in this paper.

Lemma III.1 (Travel from facility to a demand) Suppose

that the vehicle is located at the facility. Under the stochastic

return model considered, the expected distance D0 traveled

by the vehicle to any demand which is at a distance of c from

the facility is

D0 =
2

µ
(eµc − 1)− c,

where the expectation is with respect to the return process.

Proof: Without any loss of generality, assume that the demand

is along the X axis from the facility and the vehicle is at a

distance x ∈ R≥0 from the facility along the shortest path

from the facility to the demand, which is at a distance c ∈
R≥0 from the facility. Let D(x; c) 7→ R≥0 be the expected

distance the vehicle travels starting from a location at distance

x from the facility to the demand at distance c. Note that

D0 = D(0; c). Over a small incremental displacement ∆x
towards the demand, the following recursion holds:

D(x; c) = µ∆x exp(−µ∆x)(D0 + x)

+ exp(−µ∆x)(∆x+D(x+∆x; c)) + o(∆x), (2)

where µ∆x exp(−µ∆x) is the probability that the Poisson

return process generates a single return event during the

incremental displacement ∆x and therefore, the vehicle travels

a distance x back to facility and subsequently travels distance

D0 to the demand. With probability exp(−µ∆x), the Poisson

return process generates no return event, and the vehicle

advances toward the demand by distance ∆x and subsequently

covers the remaining distance D(x + ∆x; c) to the demand.

The term o(∆x) represents (∆x)2 and higher order terms.

Upon simplifying, we get

(D(x+∆x; c)−D(x; c))− µ∆xD(x+∆x; c)

= −µx∆x− (1 + µD0)∆x+ o(∆x).

Dividing both sides by ∆x and in the limit ∆x → 0+, we

obtain the following differential equation for D,

dD

dx
− µD = −µx− (1 + µD0)

=⇒ D = −e
µx

∫

e
−µx(µx+ (1 + µD0))dx

= e
µx(xe−µx +

1

µ
e
−µx +

1 + µD0

µ
e
−µx +K)

= x+
1

µ
+

1 + µD0

µ
+Ke

µx.

Using the boundary condition, D(c; c) = 0, we have

K = −e
−µc(c+

2 + µD0

µ
).

Thus, D(x; c) = −e
−µ(c−x)(c+

2

µ
+D0) + x+

2

µ
+D0.

Substituting x = 0, and solving for D0, we have

D0 = −e
−µc(c+

2

µ
+D0)+

2

µ
+D0 ⇒ D0 =

2

µ
(eµc−1)−c.

�

Lemma III.1 immediately yields the following result on the

expected service time in the light load case.

Theorem III.2 (Light load) In the limit as λ → 0+, the

steady-state service time using the FCFS policy is given by

E[T ] = s̄+
1

A

∫

E

(

2

µ
(eµ

√
x2+y2 − 1)−

√

x2 + y2
)

dx dy.

Proof: The proof follows from Lemma III.1 together with the

fact that in light load, the number of unserviced demands tends

to zero. Therefore, the expected service time for a demand is

the expected time taken by the vehicle to reach the demand

from the facility. �

Remark III.3 (Optimality) FCFS is optimal in the light load

if the facility is located at the point (weighted median [18])

that minimizes the expected distance to a demand, which

happens to be the case in the present analysis.

IV. HEAVY LOAD ANALYSIS

We now present the analysis for the heavy load case, i.e.,

ρ → 1− such that λ → +∞ and s̄ → 1/λ. We begin with

a lower bound on E[T ] which becomes a fundamental limit

to the problem. We then present a policy for the vehicle and

provide an upper bound on the expected service time.

A. Lower bound on E[T ]

We first provide a master lower bound on the travel distance

between any two demands.

Lemma IV.1 (Master lower bound on travel distance)

Let i and j denote two demands with di as the distance

between the demand i and the facility, and dij being the

distance between the two demands. Let cmin be the distance

between the facility and the nearest demand. Then, a lower

bound on the expected travel distance between demands for

a vehicle under the recall process is

d̄f ≥ E[e−µdijdij ] + E[(1 − e
−µdij )(di + cmin)], (3)

where the expectation on the right hand side is with respect

to the joint distribution of di, dij and cmin.

Proof: Consider the j-th demand and suppose that the vehicle

has just completed service of the i-th demand, is at the i-th
demand location, and is headed toward the j-th demand. The

scenario below yields a lower bound on d̄f :

Conditioned on i and j, with probability e
−µdij , the vehicle

reaches demand j along the shortest path from demand i to

j and therefore, covers a distance of dij . If the vehicle is

recalled, which happens with probability 1 − e
−µdij , then it

goes to the facility and then from the facility to the demand

nearest to the facility, as illustrated in Figure 1.





facility. From Lemma III.1, the expected distance (with respect

to the recall process) covered by the vehicle to go from the

location from which the vehicle was recalled to the facility

and back to the recall location is upper bounded by

r +
2

µ
(eµr − 1)− r ≤ 2

µ
(eµ

√
A
2 − 1),

in which we used the fact that r ≤
√

A/2. Due to unit speed

of the vehicle, the time taken by the vehicle to complete epoch

k using this modification is an upper bound on the time taken

by the TSP-based policy.

If the number of recalls in the k-th epoch are mk, then the

time taken Tk to complete the tour in the k-th epoch satisfies

Tk ≤ ETSP(Qk) +mk
2

µ
(eµ

√
A
2 − 1) + nks̄.

Since the recall process is Poisson distributed with rate µ and

is independent of the demand generation process, conditioning

on nk and taking expectation with respect to the recall process,

E[Tk |nk] ≤ ETSP(Qk) +
2

µ
(eµ

√
A
2 − 1)E[mk] + nks̄

≤ ETSP(Qk) +
2

µ
(eµ

√
A
2 − 1)µETSP(Qk) + nks̄

= ETSP(Qk)(2e
µ
√

A
2 − 1) + nks̄

= βTSP

√

Ank(2e
µ
√

A
2 − 1) + nks̄,

where we applied Theorem II.1 at the final step. Un-

conditioning on nk, we obtain

E[Tk] ≤ βTSP(2e
µ
√

A
2 − 1)

√
AE[

√
nk] + E[nk]s̄

≤ βTSP(2e
µ
√

A
2 − 1)

√
A
√

E[nk] + E[nk]s̄,

where the second inequality is obtained by applying Jensen’s

inequality to
√
nk [7]. Steady-state is achieved by this policy

if E[nk] = λ(E[Tk] − s̄). Substituting this condition into the

above equation,

E[Tk]− λs̄(E[Tk]− s̄) ≤ βTSP(2e
µ
√

A
2 − 1)

√

Aλ(E[Tk]− s̄)

⇒ (E[Tk]− s̄)(1− λs̄) ≤ βTSP(2e
µ
√

A
2 − 1)

√

Aλ(E[Tk]− s̄)

⇒
√

E[Tk]− s̄ ≤ βTSP(2e
µ
√

A
2 − 1)

√
A

(1− ρ)
,

where in the second step, we subtracted s̄, a positive number

only from the left hand side. This yields the claim. �

Remark IV.4 (Factor of optimality) From Theorems IV.2

and IV.3, for a fixed µ, the TSP-based policy achieves a factor

of optimality in terms of A and ρ given by

2
(2eµ

√
A
2 − 1)2

e−2µ
√
2A

,

which tends to 2 in the limit of µ → 0+. This expression

suggests that if µ were to scale faster than O(1/
√
A), then

it would mean that the vehicle would be recalled frequently

enough that it spends most of its time simply moving back

and forth between the facility and a demand location, leading

to poor performance in terms of expected service time. On

the other hand, if µ = K/
√
A, we obtain a constant factor

approximation for this problem with the factor given by

2
(2eK

√
1

2 − 1)2

e−2
√
2K

.

This constant is below 4 for a value of K ≤ 1/10.

V. NUMERICAL STUDIES

We now present results of numerical studies in order to

quantify performance of the TSP-based policy in practice to

assess the gap with the theory and to study the performance

in the non-asymptotic regimes of the problem parameters. The

linkern1 solver was used to generate approximations to the

ETSP at every iteration of the policy.

The numerical implementations were performed as follows:

with an initial number of demands given by the arrival rate λ
times the lower bound on E[T ], we run the TSP-based policy

for a sufficiently large number of epochs (in our case, 20

epochs) to ensure steady-state is reached. Then, we report the

average of the service times at steady-state. We assume an

environment with area A = 10 and mean onsite service time

s̄ = 0.1. Figure 3 summarizes the expected service time at

steady-state for varying values of the demand arrival rate λ
with the value of µ = 0.1. The results suggest that although

Theorems IV.2 and IV.3 have been proven to hold only in

limiting regimes of λ → +∞ and ρ → 1−, the bounds hold

empirically for non-asymptotic regimes as well.

We also numerically study a simple nearest neighbor (NN)

policy in which the vehicle services the demand nearest to

the most recently serviced demand. This policy is difficult

to analyze, but it is computationally more efficient than the

TSP-based policy. However, the TSP-based policy has a much

lower expected service time than the NN. Further, there exist

demands that do not get served over the duration of the

simulation in the NN policy, thereby leading to E[TNN] = +∞.

In Figure 3, we have reported only the average service times

for the demands that have been served in the duration of the

simulation.

Next, we empirically study the performance under a dif-

ferent recall model, instead of the Poisson process analyzed

in this work. This is motivated by modeling of failure events

that make the vehicle return to the facility. We consider a

more general, linear hazard function [22], h(x) = µ + bx,

which leads to F (x) = 1 − e
−µx−bx2/2, as the cumulative

distribution function for the recall. Such increasing hazard rate

captures the fact that the recall probability increases with time.

Here, µ is a base recall rate and b is the rate of increase of the

recall rate. Figure 4 summarizes the results of the TSP-based

policy applied to this model and suggests that the expected

service time: 1) varies exponentially with λ and 2) is more

sensitive to b than to µ.

1The TSP solver linkern is freely available for academic research use
at http://www.math.uwaterloo.ca/tsp/concorde/.



Fig. 3. Performance of the TSP-based and the NN policies. For the NN
policy, this plot reports only the average service times for the demands that
have been served, since there exist demands that do not get served over the
duration of the simulation.

Fig. 4. Empirical performance of the TSP-based policy for different values of
the parameters µ, b of a linear hazard function whose cumulative distribution

function is given by F (t) = 1− e
−µt−bt2/2.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper introduced a new variant of DVR problems in

which a single vehicle gets recalled to a central facility in the

environment as per a Poisson process. The goal was to design

service policies to minimize the steady-state expected service

time of demands that appear in the environment via another

Poisson process. We analyzed an FCFS policy in light load.

In heavy load, we derived a policy independent lower bound

on the expected service time as a function of the problem

parameters. We then designed a service policy by adapting

a well-known policy based on repeated computation of the

ETSP tour through unserviced demands. We provided an upper

bound on the steady-state service time for this policy that

performs within a constant factor of the lower bound in terms

of the demand arrival rate. Finally, we presented a numerical

study in non-asymptotic parameter regimes, comparison with

nearest neighbor policy and studied a recall model beyond the

scope of the presented analysis.

In future, we plan to explore theoretical developments ex-

tending this work to more general failure models with memory,

such as the one with linear hazard rate. Also of interest is the

version of this problem with multiple vehicles.
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